Những câu hỏi liên quan
Đàm Minh Quang
Xem chi tiết
kagamine rin len
28 tháng 2 2017 lúc 19:38

2a)với a,b,c là các số thực ta có 

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)

tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)

tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)

cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)

dấu "=" xảy ra khi và chỉ khi a=b=c

Bình luận (0)
Xem chi tiết
Unruly Kid
12 tháng 12 2017 lúc 21:08

Từ giả thiết ta suy ra

\(\dfrac{1}{a}+\dfrac{1}{b}+c=3\)

Đặt \(\left(x;y;z\right)=\left(\dfrac{1}{a};\dfrac{1}{b};c\right)\Rightarrow x+y+z=3\)

\(VT=\dfrac{1}{\sqrt{xy+x+y}}+\dfrac{1}{\sqrt{yz+y+z}}+\dfrac{1}{\sqrt{xz+x+z}}\)

Ta chứng minh: \(\left(x+1+y\right)^2\ge3\left(xy+x+y\right)\)(Luôn đúng)

\(\Rightarrow VT\ge\dfrac{\sqrt{3}}{x+y+1}+\dfrac{\sqrt{3}}{y+z+1}+\dfrac{\sqrt{3}}{z+x+1}\ge\dfrac{9\sqrt{3}}{2\left(x+y+z\right)+3}=\sqrt{3}\)

Bình luận (0)
Nguyễn Phương Thảo
Xem chi tiết
Dung Đặng Phương
Xem chi tiết
Phùng Minh Quân
25 tháng 1 2020 lúc 21:05

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Nyatmax
25 tháng 1 2020 lúc 22:23

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

Bình luận (0)
 Khách vãng lai đã xóa
Nyatmax
26 tháng 1 2020 lúc 8:21

Cho o dong 2 la x,y,z nhe,ghi nham

Bình luận (0)
 Khách vãng lai đã xóa
Thanh Tâm
Xem chi tiết
Lầy Văn Lội
20 tháng 5 2017 lúc 0:25

có lẽ xài viete.

a+b+c=abc <=> b+c=abc-a=a.(2a2-1)=2a3-a

mà bc=2a2=> b,c là nghiệm của phương trình \(x^2-\left(2a^3-a\right)x+2a^2=0\)

để phương trình có nghiệm thì \(\Delta=\left(2a^3-a\right)^2-8a^2\ge0\Leftrightarrow a^2\left[\left(2a^2-1\right)^2-8\right]\ge0\)

\(\Leftrightarrow2a^2-1\ge2\sqrt{2}\Leftrightarrow a^2\ge\frac{1+2\sqrt{2}}{2}\Leftrightarrow a\ge\sqrt{\frac{1+2\sqrt{2}}{2}}\)(đpcm)

Bình luận (0)
Trần Lâm Thiên Hương
Xem chi tiết
Luân Đặng
Xem chi tiết
Phùng Minh Quân
23 tháng 1 2020 lúc 17:34

\(A=\frac{\frac{1}{2}a^2\left(\sqrt[3]{b}+\sqrt[3]{c}+1\right)\left[\left(\sqrt[3]{b}-\sqrt[3]{c}\right)^2+\left(\sqrt[3]{b}-1\right)^2+\left(\sqrt[3]{c}-1\right)^2\right]}{2\left(a+2\right)\left(a+\sqrt[3]{bc}\right)}\ge0\)

\(\Sigma_{cyc}\frac{a^2}{a+\sqrt[3]{bc}}=\Sigma_{cyc}A+\Sigma_{cyc}\frac{2\left(a-1\right)^2}{3\left(a+2\right)}+\frac{5}{6}\left(a+b+c\right)-1\ge\frac{5}{6}\left(a+b+c\right)-1=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Kudo Shinichi
23 tháng 1 2020 lúc 21:24

Áp dụng bất đẳng thức cộng mẫu số 

\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\)\(\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\)\(\ge\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

Chứng minh rằng : \(\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\frac{3}{2}\)

\(\Leftrightarrow18\ge3\left(3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}\right)\)

\(\Leftrightarrow18\ge9+3\sqrt[3]{bc}+3\sqrt[3]{ca}+3\sqrt[3]{ab}\)

\(\Leftrightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\hept{\begin{cases}a+b+1\ge3\sqrt[3]{ab}\\b+c+1\ge3\sqrt[3]{bc}\\c+a+1\ge3\sqrt[3]{ca}\end{cases}}\)

\(\Rightarrow2\left(a+b+c\right)+3\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)

\(\Rightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\left(đpcm\right)\)

Vì \(\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\frac{3}{2}\)

Mà \(\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\ge\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\ge\frac{3}{2}\left(đpcm\right)\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
minh nguyen
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2022 lúc 19:30

Đề bài sai

Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)

Bình luận (2)
Nguyễn Việt Lâm
19 tháng 4 2022 lúc 21:23

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x^2;y^2;z^2\right)\Rightarrow xyz=1\)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\)

\(P=\dfrac{1}{\left(x^2+y^2\right)+\left(y^2+1\right)+2}+\dfrac{1}{\left(y^2+z^2\right)+\left(z^2+1\right)+2}+\dfrac{1}{\left(z^2+x^2\right)+\left(x^2+1\right)+2}\)

\(P\le\dfrac{1}{2xy+2y+2}+\dfrac{1}{2yz+2z+2}+\dfrac{1}{2zx+2x+2}\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{xz\left(xy+y+1\right)}+\dfrac{x}{x\left(yz+z+1\right)}+\dfrac{1}{zx+x+1}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x.xyz+xyz+xz}+\dfrac{x}{xyz+xz+1}+\dfrac{1}{xz+x+1}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x+1+xz}+\dfrac{x}{1+xz+1}+\dfrac{1}{xz+x+1}\right)=\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

Bình luận (0)
Nguyễn Vân Hương
Xem chi tiết